
This is a preprint of a paper intended for publication in a journal or proceedings. Since
changes may be made before publication, this preprint is made available with the
understanding that it will not be cited or reproduced without the permission of the
author.

Law
re

nce

Liver
m

ore

Nati
onal

Lab
ora

to
ry

UCRL-JC-120637
PREPRINT

This paper was prepared for submittal to the
Fifth International Conference on Computer Graphics

and Visualization in Russia
St. Petersburg, Russia

July 3-7, 1995

May 1995

N. Max
R. Crawfis
B. Becker

Applications of Texture Mapping to
Volume and Flow Visualization

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor the
University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or the University of California, and shall not be used for advertising
or product endorsement purposes.

Applications of Texture Mapping to Volume and Flow Visualization

Nelson Max
Roger Crawfis
Barry Becker

Lawrence Livermore National Laboratory1

Abstract

We describe six visualization methods which take advantage of
hardware polygon scan conversion, texture mapping, and composit-
ing, to give interactive viewing of 3D scalar fields, and motion for
3D flows. For volume rendering, these are splatting of an optimized
3D reconstruction filter, and tetrahedral cell projection using a tex-
ture map to provide the exponential per pixel necessary for accurate
opacity calculation. For flows, these are the above tetrahedral pro-
jection method for rendering the “flow volume” dyed after passing
through a dye releasing polygon, “splatting” of cycled anisotropic
textures to provide flow direction and motion visualization, splat-
ting motion blurred particles to indicate flow velocity, and advect-
ing a texture directly to show the flow motion. All these techniques
are tailored to take advantage of existing graphics pipelines to pro-
duce interactive visualization tools.

1. Introduction

Scientific visualization is necessary to understand the output of
large scale physical computer simulations in mechanics, hydrody-
namics, and climate modeling. It is also useful in understanding
data reconstructed from measurements like MRI tomography and
X-ray crystallography. One often wants to visualize a 2D or 3D sca-
lar, vector, or tensor field, or a steady or unsteady flow. Real time
animation is useful for understanding time varying phenomena, and
quick interaction is helpful in understanding 3D fields. This de-
mands fast rendering of the images.

In this paper, we survey several rendering techniques we have
recently developed, which achieve high speed by taking advantage
of texture mapping hardware. Such hardware was originally devel-
oped for improved realism in training simulators, and is currently
available on several high-end workstations. We expect it to become
standard on future workstations, because of its ability to enhance
image realism without increasing the complexity of geometric
models.

In the following section, we briefly survey the concepts of tex-
ture mapping and compositing. Then in section 3, we present two
methods which use texture mapping to render 3D scalar volume
densities. Section 4 describes four methods which use texture map-
ping to visualize vector fields or flows.

2. Texture mapping

Texture mapping for computer graphics rendering was first done
in software by Ed Catmull [1]. It greatly enhances the apparent de-
tail of an image, without increasing the number of graphics primi-
tives like polygons or surface patches. The basic idea is to
precompute or scan in a rectangular raster image representing the
desired texture. The horizontal and vertical raster coordinates in

1. Address: L-301, Lawrence Livermore National Laboratory,
7000 East Avenue, Livermore, CA 9550, USA.
E-mail: max2@llnl.gov, crawfis@llnl.gov, becker1@llnl.gov

this image are used as texture parameters. When a primitive is ren-
dered, texture parameters for each image pixel are determined, and
used to address the appropriate texture pixels. If the parameters
vary smoothly across the surface, the texture appears to be applied
to the surface. For example, on polygons, the texture parameters
can be specified at the polygon vertices, and bilinearly interpolated
in screen space (or in object space for better perspective projection
during scan conversion). On triangles, bilinear interpolation is
equivalent to linear interpolation. For surface patches, the same pa-
rameters used for the surface shape functions can be used as texture
parameters.

If the texture is a photograph complete with shading and shad-
ows, it will not appear realistic when mapped to a curved surface.
Therefore, the texture map is usually used to specify surface reflec-
tivity, and then shading algorithms are applied.

Appropriate resampling is necessary when applying the texture
to a surface. A surface pixel does not usually correspond exactly to
a texture pixel, so its texture value should be a weighted average of
several nearby pixels in the texture map. Heckbert [2] and Wolberg
[3] describe a variety of anti-aliased resampling schemes. Here, I
will describe the algorithms implemented in our workstation hard-
ware. The texture parameters are interpolated with extra precision,
so that the integer parts determine a texture pixel address, and the
fractional parts determine fractional distances to the next adjacent
pixel row or column. The fractional parts are then used to compute
weights for a bilinear combination of four adjacent texture pixels.

This scheme gives a smooth resampling in the case that the
mapped texture pixels are approximately the same size as the image
pixels, and a smooth interpolation if the mapped texture pixels are
larger than the image pixels. However if the mapped texture pixels
are much smaller than the image pixels, some texture pixels which
should contribute to the image may be missed entirely, since each
image pixel involves at most four texture pixels. Lance Williams’
MIP mapping [4] offers a partial solution to this problem. From the
original texture map, another map is made at half the resolution, by
averaging the pixel values in groups of four. The process is repeat-
ed, to make maps of 1/4 resolution, 1/8 resolution, etc. Then when
the texture is used on a surface, an appropriate scale map is chosen,
and the scheme of the previous paragraph, using a weighted aver-
age of four adjacent pixels, is applied. In order to prevent a sudden
visible transition between two different resolution versions of the
texture, a weighted average of the two closest-scale maps may be
used, giving in effect, a weighted average of eight texture map val-
ues.

One application for texture mapping is to render complicated
shapes like trees, clouds, or people, with a single polygon. This is
done by storing both a color and an opacity in the texture map. The
opacityα varies from 0 (completely transparent) to 1 (completely
opaque). It is used to composite the textured polygon over the back-
ground, using one of the following formulae:

composite =α ⋅ color + (1-α) ⋅ background (1a)

composite = color + (1-α) ⋅ background. (1b)

See Porter and Duff [5] for a detailed explanation of these and other
compositing formulas. In order to get the appropriate transparency
effects, the objects on the scene must be sorted and composited in
back to front order.

The six methods discussed below all involve compositing semi-
transparent objects. They can be combined with other opaque geo-
metric objects in the scene, without involving these opaque objects
in the sorting. The opaque objects are rendered first, using a z-buff-
er to determine their visibility. Then when compositing the semi-
transparent objects, their z is compared to the z-buffer value to
determine where the compositing should take place, but the z-buff-
er is not updated.

We used a Silicon Graphics Onyx, with two MIPS 4400 CPUs
and a Reality Engine graphics processor, in the work described be-
low. This graphics processor performed in hardware all the textur-
ing and compositing algorithms described above, including
fractional precision texture coordinates, MIP mapping, color/opaci-
ty texturing, compositing, multiplication of texture map values by
separate transparency, color, and shading values interpolated from
the polygon vertices, and flexible z-buffer testing/updating options.
Similar capabilities are offered on hardware from Kubota, Evans
and Sutherland, and other manufactures.

3. Volume rendering

The goal of volume rendering is to produce an image of a vary-
ing density volume by projecting it on to an image plane. The color
and opacity at a point in the volume can be specified as functions of
a 3-D scalar field being visualized, and may also involve the gradi-
ent of the scalar field, the lighting direction, and the values of the
scalar at other distant points. A survey of optical models for volume
rendering is given in Max [6]. The basic ray tracing method for vol-
ume rendering integrates the color along a ray from the viewpoint
passing through each pixel center, and continuing on into the vol-
ume. This integration must take account of the accumulating opaci-
ty along the ray, and compute

(2)

wherex(s) is the point at a distances from the viewpoint along the
ray, D is the distance to the edge of the data volume or to the first
completely opaque object, and

is the transparency of the volume between the viewpoint andx(s).
See Max [6] for a derivation of equation (2) and the standard effi-
cient algorithms for estimating the integral by sampling along the
ray. If the color and opacity values are only determined at the verti-
ces of a volume grid, these values must be interpolated at the sam-
ple points on the ray.

 An alternative to ray tracing is to project and composite semi-
transparent volume elements in back to front order onto the image
plane. The basic difference between projection methods and ray
tracing methods is in the order of the loops over image pixels and
volume data elements. For ray tracing, the outer loop is over the im-
age pixels, and the inner loop is over the data elements along the
ray. For projection, the outer loop is over the data elements, and the
inner loop is over the image pixels they effect. This section discuss-
es two techniques for using hardware texture mapping in projection
methods. The ideal projection method should be mathematically
equivalent to the ray tracing integral (2).

3.1.1 Splatting

In the first of our hardware assisted projection methods, the data
elements are vertices of a regular grid. We use the splatting tech-
nique of Westover [7], which considers the continuous volume den-
sity as a weighted sum

(3)

I color x s()() exp opacity x t()() td
0

s

∫–

0

D

∫= ds

exp opacity x t()() td
0

s

∫–

W x y z, ,() h x i y j z k–,–,–() V i j k, ,()
k

∑
j

∑
i

∑=

wherei, j, andk are indices for an integer grid vertex,V(i, j, k) is the
data value at that vertex,W(x, y, z) is the interpolated value at a gen-
eral non-integer point (x, y, z), andh(u, v, w) is the weighting func-
tion, sometimes called the reconstruction kernel, describing the
influence of each data value in the interpolation. Usually,h(u, v, w)
will have small compact support, so only a few terms in the sum (3)
have non-zero weights. For trilinear interpolation

(4)

and only 8 non-zero terms are involved.

Westover proposed integratingh(u, v, w) along the viewing di-
rection, to get a function

(5)

of only two variables, representing the influence of a single non-
zero data value on the plane. This 2-D projection of the weighting
function is called a splat. The splatf (u, v) is stored at high resolu-
tion in a texture map. During rendering, the grid vertices are pro-
cessed from back to front. For each vertex, the values forf at the
pixels it influences are retrieved (or interpolated) from the texture
map, and multiplied by the color and opacity values for the vertex
to get values to use in the compositing equation (la). Westover [7]
did this in software, but we did it using the texture mapping and
compositing hardware in our workstation.

There are some problems with the method described above. One
often wishes to rotate the data volume, so that the resulting motion
parallax gives visual cues about the 3D distribution of the volume
density. In fact, interactive rotation was the original motivation for
the splatting technique. However, the standard trilinear weights in
equation (4) are not rotationally symmetric, so a separate integra-
tion as in equation (5) would be needed for each new orientation,
and the orientations even vary within a single frame in the case of
perspective projection. Therefore a rotationally invariant weighting
function is desired.

Westover proposed using a gaussian function

which is rotationally symmetric, and has the simple integral

This function does not have compact support, so it must be truncat-
ed to make a reasonable-sized texture. Laur and Hanrahan [8] ap-
proximated the gaussian (6) by a piecewise linear function, whose
effect on the image could be produced by compositing a collection
of triangles with linearly varying color and opacity. This could be
done with standard scan conversion and compositing hardware,
without the need for texture mapping. However Mach bands are
visible at the triangle edges.

When rendering a volume as a composition of splats, they
should blend together so that the individual splats are not visible. In
an ideal situation, the sum (3) should be constant if all the data val-
uesV(i, j, k) are equal to 1.,i. e.

(7)

This will be the case if the trilinear interpolation weighting (4) is
used, but can never be the case for a rotationally symmetric splat.
Nevertheless, there are splats of small finite support which are su-
perior to gaussians in this regard. In [9], we derived a piecewise cu-
bic function

h u v w, ,() 1. u–() 1. v–() 1. w–()=

f u v,() h u v w, ,() wd
∞–

∞

∫=

h u v w, ,() exp= u
2

v
2

w
2

+ +() σ2⁄–()

f u v,() h u v w, ,()
∞–

∞

∫ dw=

σ π exp u
2

v
2

+() σ2⁄–()= (6)

W x y z, ,() h x i y j z k–,–,–()
k

∑
j

∑
i

∑ 1= =

h r() h u
2

v
2

w
2

+ +

=

which was optimized to make the sum (7) as constant as possible. It
is

h(r) =

with s = 0.889392 andt = 1.556228, and the sum (7) deviates from
1.0 by only 0.25%. Figure 1 shows a slowly varying scalar function
volume rendered with the integral (5) of this splat in the texture
map. For each data point in back to front order, a small square poly-
gon was oriented perpendicular to the viewing ray, and composited
into the image using hardware texture mapping.

Figure 1. Air flow velocity through an aerogel, indicated by splats composit-
ed using z-buffer comparisons over opaque objects representing the aerogel.

The volume rendering appears smooth in this case. However if
the vertex data represents point samples of a function with a discon-
tinuity, individual splats may be visible near the discontinuity sur-
face. This is similar to the aliasing that occurs when point samples
are taken of pixel centers near an intensity discontinuity in a 2D im-
age. Once this is done, no reconstruction kernel can eliminate the
aliasing. Instead, the image must be appropriately filtered before
sampling to eliminate high frequencies, so that each sample data
value is a weighted integral of intensities near the pixel center. The
same sort of filtering should be used when taking 3D samples to be
used in 3D reconstruction. Sometimes this filtering comes automat-
ically when the data are observed. For example, data samples from
X-ray crystallography come from inverse Fourier transforms of
measured diffraction intensities, and can easily be band limited, and
tomographic densities determined by CAT or MRI scans are aver-
ages determined by the limited spatial resolution of the detectors
and of the mathematical reconstruction. In other cases, when the
density function is defined mathematically or from a geometric
model, filtering must be done by integration around each sample
point.

Another problem with splatting is that it does not exactly corre-
spond to the integral (2). The back to front compositing means that
the contributions from equation (5) to the colored intensity for a
single splat will not contain opacity effects from that splat or any
others that have previously been composited. The transparency fac-
tor

0.557526 1.157743r
2

0.671033r
3

+– 0 r s≤ ≤

0.067599 t r–() 2
0.282474 t r–() 3

+ s r t≤ ≤
0. t r≤

accumulated by the compositing process only includes effects from
splats that are subsequently composited over the current one. This
may not be noticeable in a single image, but when a volume is ro-
tated, the sorting order may change, causing the image to visibly
jump, particularly if different colored splats are adjacent. Westover
[10] suggested a way to avoid much of this jumping. Among the
three possible coordinate plane orientations in the (i, j, k) lattice, the
one most perpendicular to the viewing direction is chosen. Splats
are used to sum (rather that composite) both the color and opacity
in each lattice plane in this orientation, and then these resampled
planes are composited as a whole, from back to front. This elimi-
nates all mutual opacity effects between splats in the same plane.
However, at some point during a rotation, the selection of the coor-
dinate plane most perpendicular to the viewing direction will
change, and a much stronger jump could result.

This modification could not be implemented easily on our hard-
ware, since the hardware compositing only uses data coming down
the graphics pipeline. Thus each color/opacity plane could be pro-
duced in hardware, but it would then need to be composited in soft-
ware, or loaded into the texture map memory as a texture on one
large polygon. Neither of these alternatives are fast, so we chose to
composite each splat separately as in Westover [7].

3.2 Polyhedron compositing

Instead of compositing splats for the data points, an alternative
is to composite polyhedra joining the data points. If the polyhedra
can be correctly sorted in back to front order, equation (2) can be
integrated separately along the viewing ray segments in each poly-
hedron. Garrity [11] has shown how to trace a ray through a collec-
tion of polyhedral cells provided that one knows which cell, if any,
is on the other side of every face in the current cell.

This topological information is also useful for doing a global
back to front sort on the cells. In [12] we considered the directed
graph whose edges correspond to the cell faces, and are directed
from the cell on the viewpoint side of the face plane to the other cell
on the side facing away from the viewpoint. If the data volume is
convex, with no holes or concavities, a topological sort of this
graph (see Knuth [13]) produces a back to front sort of the cells if
one is possible, or determines that it is impossible, in time O(n),
wheren is the number of cells and faces. Edelsbrunner [14] has
shown that for a Delaunay triangulation, this sort will always suc-
ceed. If data is available at irregularly spaced points, with no pre-
ferred meshing into cells, the Delaunay triangulation is thus a good
choice, and is also preferred because the resulting tetrahedra have
good shape properties.

For volumes with holes or concavities, Williams [15] has sup-
plemented this topological sort with a separate sort on the cells
which have free faces facing towards the viewpoint, but his method
is not guaranteed to give the correct answer. Steinet al. [16] give a
general sort which requires no topological information and is al-
ways correct, but it takes time O(n2). Max [17] gives special sorts
for some restricted geometries.

For polyhedral environments, polyhedron compositing [12] is
potentially more efficient than ray tracing [11], because if the inner
loop is over the cells, the scan conversion of the cells can take ad-
vantage of vertical and horizontal coherence. Maxet al. [12] show
how to do this for a convex cell by scan converting the front faces
into one z-buffer, and the back faces into another. Lucas [18] and
Max et al. [19] show how a global z-buffer eliminates the need for
the back face buffer, provided there are no holes in the volume.

After scan conversion into the front and back z-buffers, one
must calculate for each affected pixel the integral (2) along the ray
segment inside the cell. If color(x) = Cρ(x), and opacity(x) = τρ(x),
for a volume densityρ(x) of particles whose color C and opacityτ
are constant within the cell, then the integral (2) reduces to

opacity x t()() td
0

s

∫–
 exp

The ratio C/τ can be interpreted as the surface glow color of the
particles. (See [6].) If ρ(x) is trilinearly interpolated from the cell
vertices, as in a 3D version of Gouraud shading, with the viewing
direction being one of the interpolation directions, thenρ(x(s))) will
vary linearly ins, so that the integral in (8) reduces to

(9)

with the transparency

(10)

wherex(0) andx(D) are the entry and exit points of the viewing ray
for the cell. Equation (9) is can be used in the standard compositing
formula (1b) with opacityα = 1 -T, and object colorC/τ.

The remaining two directions for the trilinear interpolation are
along scan lines, and vertically between scan lines, soρ(x(0)) and
ρ(x(D)) can be bilinearly interpolated across the front and rear faces
of the cell by standard scan conversion hardware. However, an ex-
ponential per pixel is still required for equation (10).

Figure 2. Z component of vorticity for water flow past a cylinder, rendered
by compositing tetrahedra, using z-buffer comparison with the cylinder.

Here, finally, is where texture mapping can help. We divide the
screen projection of a cell into polygons bounded by projected cell
edges. Each polygon is the projection of a prismatic region of the
cell bounded on the front by a single front-facing cell face, and on
the rear by a single back facing cell face. The quantitiesu = D and
v = (ρ(x(0)) +ρ(x(D)))/2 then vary linearly across each such poly-
gon. They are specified at the polygon vertices, and linearly inter-
polated as texture parameters by the scan conversion and texture
mapping hardware. Then, in the texture table, we put the opacity
α = 1. -T = 1. - exp(-u v), which is used by the texture composit-
ing hardware. Thus equations (9) and (10) are compatible with the
graphics hardware pipeline.

I Cρ x s()() τ ρ x t()() td
0

s

∫–
 exp sd

0

D

∫=

C
τ
---- τ– ρ x s()()() τ ρ x t()() td

0

s

∫–
 exp sd

0

D

∫–=

C
τ
---- d

ds

0

s

∫– τ ρ x t()() td
0

s

∫–
 dsexp=

C
τ
----– τ ρ x t()() td

0

s

∫–
 exp

s = 0

s = D

=

C
τ
---- 1. τ ρ x t()() td

0

D

∫–
 exp–

 (8)=

I
C
τ
---- 1. T–()=

T
D
2
---- ρ x 0()() ρ x D()()+()–

 exp=

The only software component of this scheme is the subdivision
into polygons of the cell’s projection. Wilhelms and van Gelder
[20] give a line sweep algorithm for doing this for a general cell. In
our implementation, we divided all cells into tetrahedra, and used
the simpler scheme of Shirley and Tuchman [21] to subdivide the
projected tetrahedra into triangles. In their hardware rendering,
Shirley and Tuchman linearly interpolatedα itself across the tetra-
hedra instead of doing the exponential per pixel. As demonstrated
in [16] and [22], this approximation can lead to Mach bands, while
our texture mapping scheme gives smooth images. Figure 2 shows
a finite element model, where the color indicates the z component
of the vorticity, produced by this technique.

In applications like this where the color is specified separately at
each vertex, equation (9) is not valid, because the colorC is not
constant across the viewing ray segment in a cell. Williams and
Max [23] show how to calculate the integral in equation (8) when
the colorC(x) and the particle densityρ(x) both vary linearly along
the ray. There are too many parameters in this calculation to be used
as texture table indices, so the color must be calculated in software.
To produce figure 2, we used the correct color only at the vertices of
the screen projection triangles, and let the hardware interpolate it
across the triangles. Only one vertex in the screen triangulation of
each tetrahedron’s projection corresponds to a ray segment for
which color integration is required. The others, along the profile of
the projection, correspond to single tetrahedron vertices where the
color is already known.

Figure 3. Flow volume for winds in a global climate simulation.

4. Flow visualization

We now describe four techniques for flow visualization which
use texture mapping hardware. The goal is to produce animations
which indicate the flow velocity.

4.1 Flow volumes

The first technique simulates the dye or smoke used to visualize
flows in physical experiments, and takes advantage of the tetrahe-
dron projection schemes just explained in section 3.2. A dye gener-
ating polygon is interactively positioned and sized by the user, and
is automatically oriented perpendicular to the flow. The fluid which
flows through this polygon is colored by the dye. The “flow vol-
ume” to be colored is adaptively subdivided into tetrahedra, which
are rendered by the tetrahedra projection scheme above.

Figure 4. Wind velocity in global climate simulation, indicated by textures
splats whose scalar component indicated percent cloudiness.

For a steady flow, a new layer of tetrahedra is added to the flow
volume for each time step. In [22] we give details of the adaptive
subdivision of each layer into tetrahedra and also show that if all
the tetrahedra have the same dye color C/τ, the final color produced
is independent of the order in which they are composited, even if
the dye concentrationρ varies per tetrahedron. We thus eliminated
the sorting step, and the whole process runs in real time. For com-
pressible flows, we adjusted the concentrationρ to account for any
change in volume during the flow.

Even without sorting, we could insure that the dyed regions
were correctly obscured by opaque geometry, by first rendering the
opaque objects into the z-buffer. Figure 3 shows our flow volume
technique, applied to the wind velocity in a climate simulation. This
figure was generated using an instantaneous wind velocity, assumed
to be constant during the flow. Becker, Lane and Max [24] have re-
cently extended this technique to time varying flows.

4.2 Textured splats

The splats of section 3.1 were generalized by Crawfis and Max
[9], to indicate velocity direction, by using an anisotropic texture.
The texture has streaks resembling motion blurred particles which
grow brighter in the direction of motion, towards the right in the
texture map. As with the scalar splats, these vector splats are ren-
dered with small texture mapped squares, perpendicular to the
viewing direction. But now these squares are oriented so that the
streaks point in the projected vector direction. By taking advantage
of the flexible arithmetical combination of polygon vertex color and
opacity with texture map color and opacity available in our work-
station hardware, we were able to render both a scalar variable and
a vector variable in a single splat. (See [9] for details.)

In addition, we were able to make the texture move in real time
to animate the flow. We used a cycle of separate texture maps. In
each successive frame, the motion blurred particles in the texture
moved farther to the right, and perhaps re-entered at the left. Each
frame in the animation accessed the appropriate map in the texture
cycle, so that the texture moved continuously in the flow. Even if
there were too many splats to render in real time, we could rapidly
accumulate the cycle of frames in the workstation memory, and
then view them as an infinite loop. Figure 4 shows an example of
this technique.

The use of textures for splatting is a very powerful and flexible
concept. The texture used can be arbitrarily changed depending on
the purpose. We are currently investigating techniques for repre-
senting multivariate data sets using the textured splats.

Figure 5. Spot noise indicating air flow through an air filter.

4.3 Spot noise

Van Wijk [25, 26] has used small motion blurred particles to vi-
sualize flows on contour surfaces. The particles were represented as
ellipses with their long axes oriented along the direction of flow.
They were composited in software. In [27], we used hardware tex-
ture mapping to render and composite these ellipses. A basic tex-
ture was defined on a square, to give a blurred circular spot. Then,
instead of texturing a square oriented normal to the viewing ray, we
used a rectangle, whose long side was oriented along the flow ve-
locity vector. This turned the projected spot into a stretched ellipse,
whose long axis increased with increasing projected velocity. The
particles were advected by the flow, so that they indicated the flow
velocity in animation. By advecting and rendering only the particles
near a contour surface, we were able to produce real time anima-
tion. Figure 5 shows particles near a surface of constant velocity
magnitude, from a simulation of air flow through a filter.

4.4 Texture advection

The previous two methods involved compositing separate tex-
tured splats for each data point or particle. We can also advect the
texture on a continuous mesh of polygons. I will describe the meth-
od below for 2D flows, but in three dimensions, several meshed
sheets of semitransparent textured polygons can be composited on
top of each other to visualize a 3D flow.

For steady 2D flows, the simplest way to achieve texture advec-
tion is to keep the positions of the polygon vertices constant, and
change their texture coordinates from frame to frame. The appropri-
ate texture coordinates for a vertexP at timet are found by tracking
a stream line throughP backwards to findQ = Q(P, t), the point at
time 0 which will move toP at timet. This can be done incremen-
tally, one frame at a time. The texture pattern should be periodic, so
that streamlines of arbitrary length can still determine good texture
map addresses.

For time varying flows, it is more difficult to define the pointQ,
because the analogue to the backwards stream line, a backwards
particle trace, maybe completely different for each frame. In [28],
we give two ways to advect the texture for an unsteady flow. For the
first method, we derive a partial differential equation forQ(P, t),
and show how this equation can be solved incrementally from
frame to frame. Another method is to simply move the mesh verti-
ces themselves along the forward particle traces, which easily inte-
grate incrementally from frame to frame. Care must be taken to clip
polygons as they leave the region to be rendered, and to create any
necessary new polygons at places where the flow enters the region.
Figure 6 was produced by the first of these two methods.

Figure 6. Texture advection indicating flow in a simulated tornado.

Acknowledgments

This work was performed under the auspices of the U.S. Depart-
ment of Energy by Lawrence Livermore National Laboratory under
contract number W-7405-ENG-48, with specific support from an
internal LDRD grant. The sorting for figure 2 used an algorithm of
Cliff Stein. The text of this paper was initially typed by Fran Faria.

References.

[1] Edwin Catmull, “A Subdivision for Computer Display of
Curved Surfaces,” Ph. D. dissertation, University of Utah
(1974).

[2] Paul Heckbert, “Survey of Texture Mapping,” IEEE Computer
Graphics & Applications, Vol. 6 N. 11 (Nov. 1986) pp. 56 - 67.

[3] George Wolberg “Digital Image Warping,” IEEE Computer
Society Press, Los Alamitos, CA (1990).

[4] Lance Williams “Pyramidal Parametrics,” Computer Graphics
Vol. 12 No. 4 (August 1978) pp. 270 - 274.

[5] Thomas Porter and Tom Duff, “Compositing Digital Images,”
Computer Graphics Vol. 18 No. 3 (July 1984) pp. 253 - 359.

[6] Nelson Max, “Optical Models for Direct Volume Rendering,”
to appear in IEEE Transactions on Visualization and Computer
Graphics Vol. 1. No. 2 (1995)

[7] Lee Westover, “Interactive Volume Rendering”, Proceedings
of the Chapel Hill Workshop on Volume Rendering, ACM,
New York,(1989) pp. 9 - 16.

[8] David Laur and Pat Hanrahan, “Hierarchical Splatting: A Pro-
gressive Refinement Algorithm for Volume Rendering,” Com-
puter Graphics Vol. 25 No. 4 (July 1991) pp. 285 - 288.

[9] Roger Crawfis and Nelson Max, “Texture Splats for 3D Scalar
and Vector Field Visualization,” Proceedings, Visualization
’93, IEEE Computer Society Press, Los Alamitos, CA (1993)
pp. 261 - 266.

[10] Lee Westover, “Footprint evaluation for volume rendering,”
Computer Graphics Vol. 24 No. 4 (Aug. 1990) pp. 367 - 376.

[11] Michael Garrity, “Ray Tracing Irregular Volume Data,” Com-
puter Graphics Vol. 24 No. 5 (November 1990) pp. 35 - 40.

[12] Nelson Max, Pat Hanrahan, and Roger Crawfis “Area and vol-
ume coherence for efficient visualization of 3D scalar func-
tions,” Computer Graphics Vol. 24 No. 5 (1990) pp. 27 - 33.

[13] Donald Knuth, “The Art of Computer Programming, Volume
1: Fundamental Algorithms,” 2nd Edition, Addison Wesley,
Reading Mass. (1973)

[14] Herbert Edelsbrunner “An Acyclicity Theorem in Cell Com-
plexes ind Dimensions,” Proceedings of the ACM Sympo-
sium on Computational Geometry (1989) pp. 145 - 151.

[15] Peter Williams, “Visibility Ordering Meshed Polyhedra,”
ACM Transactions on Graphics, Vol. 11 No. 2 (April 1992)
pp. 103 - 126.

[16] Cliff Stein, Barry Becker, and Nelson Max, “Sorting and
Hardware Assisted Rendering for Volume Visualization,” Pro-
ceedings, 1994 Symposium on Volume Visualization, ACM
Press (1994) pp. 83 - 89.

[17] Nelson Max, “Sorting for Polyhedron Compositing”, in “Fo-
cus on Scientific Visualization” Hagen H., Müller H. and Niel-
son G. (eds) Springer Verlag, Berlin, (1993) pp 259-268.

[18] Bruce Lucas, “A Scientific Visualization Renderer”, Proceed-
ings of Visualization ’92, IEEE Computer Society Press, Los
Alamitos CA, (1992) pp 227 - 234.

[19] Nelson Max, “New Techniques in 3D Scalar and Vector Field
Visualization,” in “Computer Graphics and Applications,” S.
Y. Shin and T. L. Kunii, editors, World Scientific, Singapore
(1993) pp. 301 - 315

[20] Allan Van Gelder and Jane Wilhelms, “Rapid Exploration of
Curvilinear Grids Using Direct Volume Rendering (extended
abstract) Proceedings of Visualization ’92, IEEE Computer
Society Press, Los Alamitos CA, (1993) pp. 70 - 77.

[21] Peter Shirley and Allan Tuchman “A Polygonal Approxima-
tion to Direct Scalar Volume Rendering,” Computer Graphics
Vol. 24 No. 5 (November 1990) pp. 63 - 70.

[22] Nelson Max, Barry Becker, and Roger Crawfis, “Flow Vol-
umes for Interactive Vector Filed Visualization,” Proceedings,
Visualization ’93, IEEE Computer Society Press, Los Alami-
tos, CA (1993) pp. 19 - 24.

[23] Peter Williams and Nelson Max, “A volume density optical
model,” Proceedings - 1992 Workshop on Volume Visualiza-
tion, Boston, October 1992, ACM Order No. 429922, pp. 61-
68.

[24] Barry Becker, David Lane, and Nelson Max, “Unsteady Flow
Volumes,” submitted to IEEE Visualization ’95.

[25] Jarke J. van Wijk, “Spot Noise: Texture Synthesis for Data Vi-
sualization,” Computer Graphics Vol. 25 No. 4 (July 1991) pp.
309 - 318.

[26] Jarke J. van Wijk, “Flow Visualization with Surface Particles,”
IEEE Computer Graphics and Applications, Vol. 13 No. 4 (Ju-
ly 1993) pp. 18 - 24.

[27] Nelson Max, Roger Crawfis, and Charles Grant, “Visualizing
3D Velocity Fields Near Contour Surfaces,” Proceedings, Vi-
sualization ’94, IEEE Computer Society Press, Los Alamitos,
CA (1994) pp. 248 - 255.

[28] Nelson Max and Barry Becker, “Flow Visualization using
Moving Textures,” submitted to the ICASE/LaRC Symposium
on Visualizing Time-Varying Data (1995).

T
echnical Inform

ation D
epartm

ent • Law
rence Liverm

ore N
ational Laboratory

U
niversity of C

alifornia • Liverm
ore, C

alifornia 94551

